
Math 131B-2: Homework 6

Due: May 12, 2014

1. Read Apostol Sections 9.6, 9.8, 9.10, 9.14-15.

2. Do problems 9.2, 9.3, 9.14, 9.16, 9.22 in Apostol. [For several of these problems, it will be
extremely helpful to keep in mind Question 6 from last week].

3. Dini’s Theorem Let fn : X → R be a sequence of continuous functions on a compact metric
space X which converges pointwise to a continuous function f : X → R and suppose that
for each x the sequence {fn(x)} is increasing, i.e. fn(x) ≤ fm(x) for all n < m. We will
prove that {fn} in fact converges to f uniformly.

• Let ε > 0. For each n ∈ N, let gn = f − fn(x) and show that {x ∈ X : |gn(x)| < ε} is
an open set V ε

n of X. Moreover, show that for n < m, we have the inclusion V ε
n ⊆ V ε

m.

• Show that X ⊂ V ε
N for some N > 0. [Hint: the V ε

N cover X.]

• Prove that fn → f uniformly.

• Give an example showing that the theorem is not true if we do not require f to be
continuous. [Hint: Consider the examples done in lecture.]

This is one of very few situations where pointwise convergence implies uniform convergence.

4. A question of arc length. Recall that the sequence fn(x) = 1
n sin(nx) converges uniformly

to f(x) = 0 on the real line. Moreover, recall, e.g. from your calculus class, that whenever g
is a continuous function on [a, b] which is differentiable on (a, b) with continuous derivative

g′, the arclength of the curve {(x, g(x)) ∈ R2 : x ∈ [a, b]} is Sba(f) =
∫ b
a

√
1 + f ′(x)2dx.

Show that Sπ0 (fn) does not converge to Sπ0 (f). [Hint: You can’t actually do the integrals
you get, you’re looking for a lower bound which is greater than π.]

Ergo it is possible for a sequence of functions to converge uniformly on an interval without
convergence of the arc lengths of their graphs over the interval. What kind of hypothesis
do you think you would need to add to get convergent arc lengths?

5. Continuity makes life easier. In class we proved that if fn : (a, b) → R is a sequence of
differentiable functions such that the derivatives f ′n converge uniformly to some g on (a, b)
and {fn(x0)} converges for at least one x0 in (a, b), then there is a differentiable function
f such that fn → f uniformly, and f ′(x) = g(x). If we’re willing to add the assumption
that each of the f ′n is continuous on (a, b), we can give an easier proof.

• Show that
∫ x
x0
f ′n and

∫ x
x0
g both exist for every x ∈ (a, b), and the sequence of functions∫ x

x0
f ′n converges uniformly to

∫ x
x0
g. [Hint: This is extremely straightforward.]

• Observe that by FTC Part I,
∫ x
x0
f ′n = fn(x) − fn(x0). Therefore hn(x) = fn(x) −

fn(x0) converges uniformly to
∫ x
x0
g.

• Let L = limn→∞ fn(x0). Consider the function f : (a, b) → R defined by f(x) =
L+

∫ x
x0
g. Prove, using the second part of this problem, that fn(x)→ f(x) uniformly.

• Prove, using FTC Part II, that f ′(x) = g(x) on (a, b). [This is the only place where
it is important that the f ′n are continuous, and not merely integrable.]


